跳到主要內容區塊 網頁置頂
:::

QRcode 專區

首頁 > 出版刊物 > 其他 > QRcode 專區 > 淺談新興育種技術-基因編輯

淺談新興育種技術-基因編輯

淺談新興育種技術-基因編輯

參考文獻

1.    余祁暐, & 林彥宏. 2021. 國際基因編輯衍生食品管理機制跨國比較. 臺灣經濟研究月刊, 44(2), 13-21. 

2.    Chandrasekaran, J., M. Brumin, D. Wolf, D. Leibman, C. Klap, M. Pearlsman, and all. 2016. Development of broad virus resistance in non-transgenic cucumber using CRISPR/Cas9technology. Mol. Plant Pathol. 17(7):1140-1153 

3.    Chen, K., Wang, Y., Zhang, R., Zhang, H., & Gao, C. 2019. CRISPR/Cas genome editing and precision plant breeding in agriculture. Annual review of plant biology, 70, 667-697.

4.    Do, P. T., X. X. Nguyen, H. T. Bui, L. T. N. Tran, G. Stacey, J. D. Gillman, and all. 2019.Demonstration of highly efficient dual gRNA CRISPR/Cas9 editing of the homeologous GmFAD2-1A and GmFAD2-1B genes to yield a high oleic, low linoleic and α-linolenic acid phenotype in soybean. BMC Plant Biol. 19:311.

5.    González, M. N., Massa, G. A., Andersson, M., Turesson, H., Olsson, N., Fält, A. S., ... & Feingold, S. E. 2020. Reduced enzymatic browning in potato tubers by specific editing of a polyphenol oxidase gene via ribonucleoprotein complexes delivery of the CRISPR/Cas9 system. Frontiers in plant science, 10, 1649.

6.    Jia, H., Y. Zhang, V. Orbović, J. Xu, F. F. White, and J. B. Jones. 2017. Genome editing of the disease susceptibility gene CsLOB1 in citrus confers resistance to citrus canker. Plant Biotechnol. J. 15(7):817-823.
    
7.    Jiang, W., H. Zhou, H. Bi, M. Fromm, B. Yang, and D. P. Weeks. 2013. Demonstration of CRISPR/Cas9/sgRNA-mediated targeted gene modification in Arabidopsis, tobacco, sorghum and rice. Nucleic Acids Res. 41(20):e188.

8.    Nekrasov, V., C. Wang, J. Win, C. Lanz, D. Weigel, and S. Kamoun. 2017. Rapid generation of a transgene-free powdery mildew resistant tomato by genome deletion. Sci. Rep. 7:482.

9.    Nonaka, S., C. Arai, M. Takayama, C. Matsukura, and H. Ezura. 2017. Efficient increase of γ- aminobutyric acid (GABA) content in tomato fruits by targeted mutagenesis. Sci. Rep. 7:7057.

10.    Sadanandom, A., A. K. Srivastava, and C. Zhang. 2019. Targeted mutagenesis of the SUMO protease, Overly Tolerant to Salt1 in rice through CRISPR/Cas9-mediated genome editing reveals a major role of this SUMO protease in salt tolerance. BioRxiv. 555706.

11.    Shan, Q., Wang, Y., Li, J., Zhang, Y., Chen, K., Liang, Z., ... & Gao, C. 2013. Targeted genome modification of crop plants using a CRISPR-Cas system. Nature biotechnology, 31(8), 686-688.

12.    Shi, J, H. Gao, H. Wang, H. R. Lafitte, R. L. Archibald, M. Yang, and all. 2017. ARGOS8 variants generated by CRISPR-Cas9 improve maize grain yield under field drought stress conditions. Plant Biotechnol. J. 15(2):207-216.

13.    Sun Y, Jiao G, Liu Z, Zhang X, Li J, et al. 2017. Generation of high-amylose rice through CRISPR/Cas9- mediated targeted mutagenesis of starch branching enzymes. Front. Plant Sci. 8:1298

14.    Waltz, E. 2016. Gene-edited CRISPR mushroom escapes US regulation. Nature News, 532(7599), 293.

15.    Wang, F., C. Wang, P. Liu, C. Lei, W. Hao, Y. Gao, and all. 2016. Enhanced rice blast resistance by CRISPR/Cas9-targeted mutagenesis of the ERF transcription factor gene OsERF922. PLoS ONE 11(4):e0154027.

16.    Zhang, A., Y. Liu, F. Wang, T. Li, Z. Chen, D. Kong, and all. 2019. Enhanced rice salinity tolerance via CRISPR/Cas9-targeted mutagenesis of the OsRR22 gene. Mol. Breed. 39:47.

17.    Zhang, Z., X. Ge, X. Luo, P. Wang, Q. Fan, G. Hu, and all. 2018. Simultaneous editing of twocopies of Gh14-3-3d confers enhanced transgene-clean plant defense against Verticillium dahlia in allotetraploid upland cotton. Front. Plant Sci. 9:842.

Top