由於現行寄接梨生產模式每年仍需進口 大量昂貴花穗, 年年重新嫁接, 嫁接後若逢 寒流、陰雨或乾旱等不良天候狀況,造成授 粉及著果不良,農友又必須重新嫁接(翻刀); 再加上近年暖冬影響,生產成本及風險高,

並可作為產業發展與輔導參考依據。

表 1. 不同落葉果樹種類之需冷量 (Faust, 1989) 表 2. 不同梨品種之低溫需求量 (廖·1995)

| 種類   | 7.2℃低溫小時數 |  |  |  |
|------|-----------|--|--|--|
| 杏    | 0-800     |  |  |  |
| 桃    | 100-1,250 |  |  |  |
| 日本李  | 100-800   |  |  |  |
| 蘋果、梨 | 200-1,400 |  |  |  |
| 歐洲李  | 800-1,500 |  |  |  |
| 櫻桃   | 800-1,700 |  |  |  |

皆為目前梨產業發展所面臨的問題。因此,

未來研究重點可朝發展穩定生產技術、耐逆

境調適技術及低需冷量品種撰育方向努力,

降低生產成本及風險,對農民才有實質幫助,

| 種類            | 估計低溫需求量 (CU) |
|---------------|--------------|
| 臺灣野梨          | 50           |
| 橫山梨           | 120          |
| 台農 2 號 (4029) | 800          |
| 臺中1號          | 600-700      |
| 臺中 2 號        | 200-300      |
| 二十世紀          | 1,400        |
| 豐水            | 1,350-1,500  |
| 幸水            | 500-1,350    |
| 新世紀           | 1,500        |
|               |              |

表 3. 新竹氣象站歷年平均溫度統計(單位:℃)

| 民國              | 81-99年               | 105年                 | 106年                 | 107年                 | 108年               | 109年                 |
|-----------------|----------------------|----------------------|----------------------|----------------------|--------------------|----------------------|
| 12月<br>1月<br>2月 | 17.7<br>15.5<br>15.9 | 18.3<br>15.6<br>14.5 | 19.5<br>17.7<br>16.3 | 17.5<br>16.3<br>14.6 | 19.1<br>17.7<br>18 | 18.3<br>16.7<br>17.6 |
| 平均              | 16.4                 | 16.1                 | 17.8                 | 16.1                 | 18.3               | 17.5                 |

表 4. 新竹氣象站歷年降水量統計(單位:毫米)

| 民國  | 81-99年 | 105年  | 106年 | 107年  | 108年 | 109年  |
|-----|--------|-------|------|-------|------|-------|
| 12月 | 47.7   | 89.3  | 6.5  | 23.8  | 30.5 | 140.2 |
| 1月  | 64.5   | 311.1 | 23.4 | 266.7 | 25.5 | 36    |
| 2月  | 142.1  | 73.3  | 91.7 | 83.5  | 67.9 | 55    |
| 平均  | 85     | 158   | 41   | 125   | 41   | 77    |

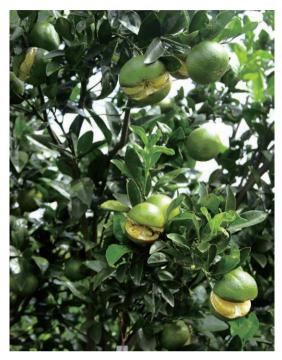
## 柑橘栽培週年水分管理要點

新埔工作站 助理研究員 施伯明 03-5894949 分機 13

### 前言

水分是影響柑橘生產的重要因子,各生 長發育階段水分需求程度並不相同。生長速 率較快時通常需水較多,此時若水分供應不 及容易導致植株水勢下降、氣孔導度降低及 二氧化碳同化速率變慢等生理變化, 進而限

制樹冠的發育和莖的生長,並影響植株開花及果實發育,最終影響果實品質及產量;相對之下,採收前適度缺水有助於增加糖、酸含量而提升果實品質,且乾旱亦有助於誘導花芽形成。


#### 柑橘生育週期水分需求

柑橘一般於 2-4 月開花,花著生於新生 春梢頂芽或著生於前一年生枝條腋芽,此時 期需水較多, 缺水容易導致春梢生長減緩, 並造成花苞或小花脫落,降低著果率,尤其 以無子品種受影響較為嚴重。花謝後到牛理 落果結束為果實生長第1階段,果實體積增 加緩慢,生長以細胞分裂為主,缺水可能導 致大量落果。從生理落果後至轉色前為果實 生長第2階段,此時為細胞充實及膨大期, 果實體積快速增加,須維持水分穩定供應, 若水分不足容易導致小果比例增加;且此時 正值夏、秋季高温期,缺水影響氣孔散熱, 將使果實對高溫更為敏感而容易發生日燒, 若乾旱持續甚至造成落果而使產量顯著減少。 此外,夏、秋季營養生長非常旺盛,充分供 水亦可使夏梢及秋梢發育良好,做為翌年結 果母枝:相對之下,若持續乾旱,將導致葉 片水勢開始下降,不但延遲抽梢,若缺水狀 況持續, 甚至不再生長, 並出現葉片萎凋及 脫落現象,限制樹冠發育。而對於水分逆境 造成的果實和葉片脫落,通常在缺水時期不 會發生,但在復水後會大量掉落。

除缺水問題外·水分過多亦會影響柑橘生長;臺灣的夏、秋季常因颱風或對流帶來過多降雨·在排水不良情況下·易導致土壤結構改變·土壤中氧氣濃度降低並積累二氧



▲圖 1. 果實生長第 2 階段是體積快速增加時期,水分不足易使小果比例增加,並導致落果。



▲圖 2. 水分供應不穩定常造成茂谷柑大量裂果。

化碳、誘導有機物厭氧分解、以及降低鐵和 錳的溶解度;且固硫細菌將硫化物還原為硫 化氫、進而對柑橘根造成傷害並縮短細根壽 命、甚至造成土壤病原菌危害風險增加、不 利柑橘植株生長。而根據研究顯示、柑橘果 實發育早期及晚期多兩容易導致果實汁胞粒 化(granulation、俗稱乾米)、久旱過後大



▲圖 3. 排水不良不利柑橘根部透氣,造成細根壽命縮短,不利養分吸收,且易增加土 壤病原菌危害風險。

兩則容易造成部分種類嚴重裂果;因此,夏、 秋季生長旺盛期除應維持水分穩定供應外, 亦需加強果園排水,避免積水不退情形發生。

果實生長第3階段為成熟期,此時期果實生長減緩,果皮葉綠素開始分解而轉色,適度乾旱有助於提升果實品質,包括促進果實成熟、增加可溶性固形物及可滴定酸,在葡萄柚中也能增加胡蘿蔔素、類黃酮及酚類含



▲圖 4. 果園應視地形設置排水溝,有利根部 透氣,延長細根壽命。

### 結語

水分除了維持柑橘植株基本生長所需外,在與其他環境或栽培因子交互作用下,亦會影響柑橘開花、生長、果實發育及果實品質;而近來每年未降兩日數及豪大兩日數有增加趨勢,與過去相較之下降兩愈來愈不平均,導致乾旱及水分過多的風險隨之增加,因此,如何做好果園水分管理可說是穩定生產優質柑橘果實的重要課題。



▲圖 5. 灌溉系統管路視需求及管理便利性,可埋設於土中或高架於枝幹上。

# 節水作物—薏苡· 旱田直播忌密植·寬行栽培效果好

作物改良課 助理研究員 林禎祥 分機 214



▲圖 1. 較寬的行株距 (60 公分×20 公分), 薏苡生育旺盛,為產量表現打下良好基礎。