108年5月份專題報告

電動遙控小葉菜散裝收穫機性能提升 108.5.20

分項

葉菜產業概況: 葉菜收穫方式問題分析: 電動遙控收穫機系統設計: 未來研究方向及展望:

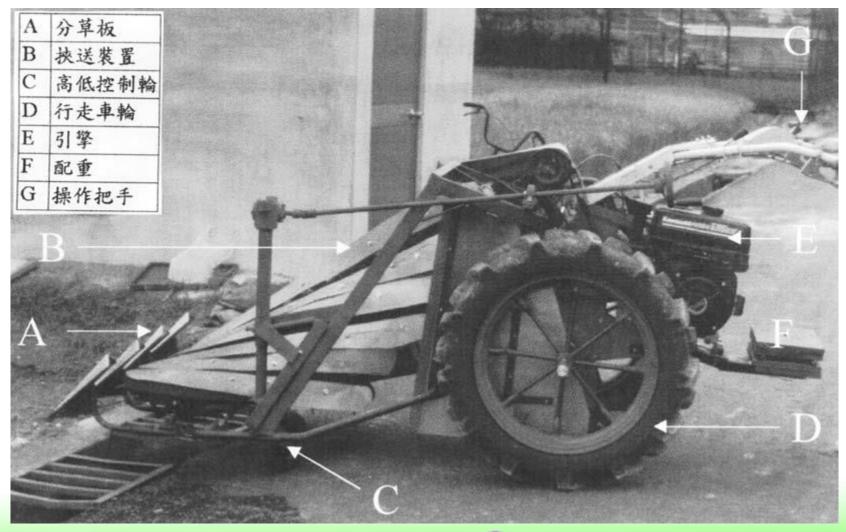
葉菜產業概況:

目前國內設施溫網室約有9,500 ha,種植 葉菜類為主,而莧菜為國內餐飲業重要之 食材,主要都是種植在設施溫網室內,以 桃園地區為例,夏季有八成之溫網室種植 莧菜,每天平均有12,000~18,000 kg之收穫 量,最高時可達日產30,000 kg。莧菜生長 速度快,遇到盛產期需要大量人工進行採 收,但往往雇工不易;若來不及採收,就 另需進行病蟲害防治工作

葉菜收穫方式問題分析:

- 1.人工收穫
- 2.機械收穫

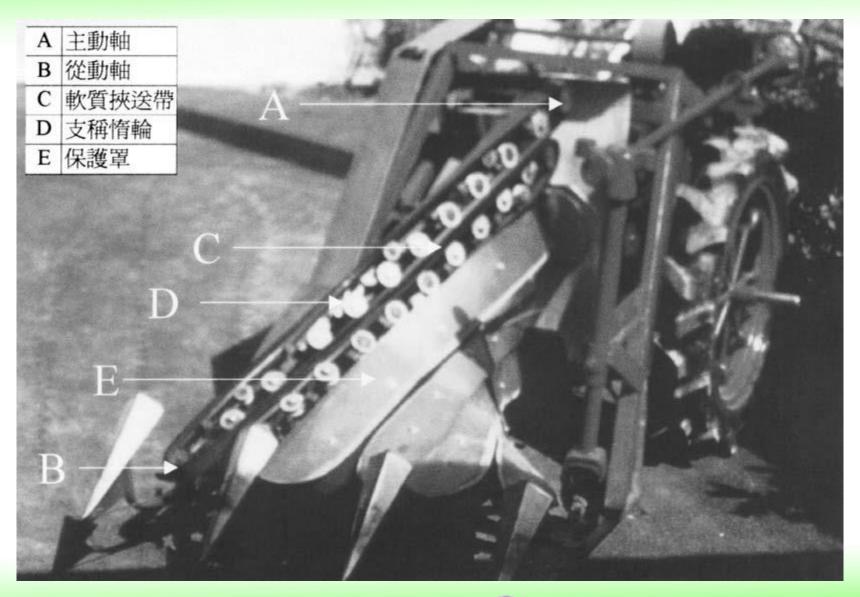
人工收穫現況



Taoyuan District Agricultural Research and Extension Station

機械收穫

高雄區農業改良場民國83年



高雄區農業改良場

Taoyuan District Agricultural Research and Extension Station

高雄區農業改良場葉菜採收機

Taoyuan District Agricultural Research and Extension Station

高雄區農業改良場葉菜採收機

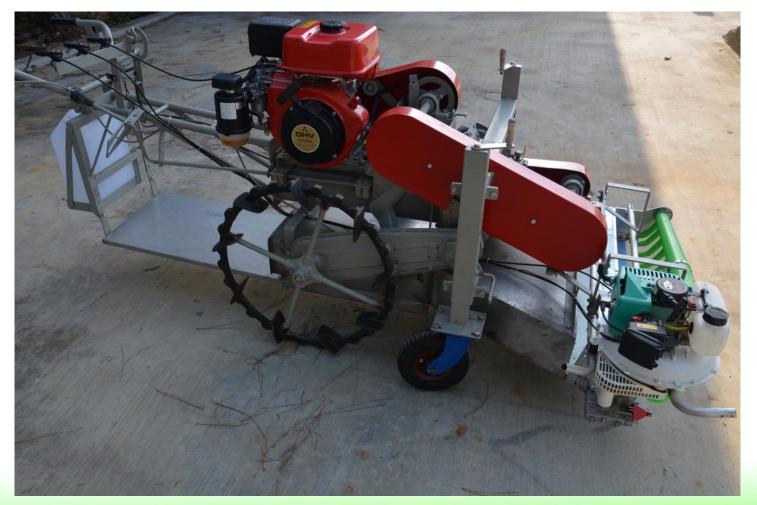
高雄區農業改良場葉菜採收機

葉菜採收機

高雄場葉菜採收

Taoyuan District Agricultural Research and Extension Station

高雄場葉菜採收


桃園農友葉菜採收機

葉菜採收

桃改場一號葉菜採收機

桃改場二號電動葉菜採收機

桃改場三號電動葉菜採收機

測試結果

- 1. 已被割取之葉菜光依靠吹風機,因風量不均勻且不足,以致於葉菜堆放於前端,葉菜後送問題需解決。
- 2. 因採用三輪式支撐機身,輪子會因畦面坑洞而行走速度不均勻,而履帶式則速度均勻。

修改設計

- 1. 採用柔軟膠布為夾持嬌嫩葉菜之結構, 跳脫傳統採用鐵製鏈條設計。
- 2. 葉菜經由柔軟膠布夾持機構,將割取 後嬌嫩葉菜夾持後送直接入塑膠籃, 達到「蔬菜不落地」採收要求提供了 未來清洗上節省用水支出。

葉菜夾持損傷情形

葉菜夾持損傷情形

更改分隔板及加裝側面板以減少葉菜損傷

收穫後畦面

葉菜甘藷園

葉菜甘藷園

葉菜甘藷採收

新北樹林機械採收之葉菜甘藷

桃園平鎮收穫後葉菜甘藷沒有受傷痕跡

採收後之葉菜甘藷園

採收後之甘藷園

採收後葉菜甘藷園 畦面

桃農博林主委向鄭市長介紹功能

桃農博林主委向駐華使節介紹

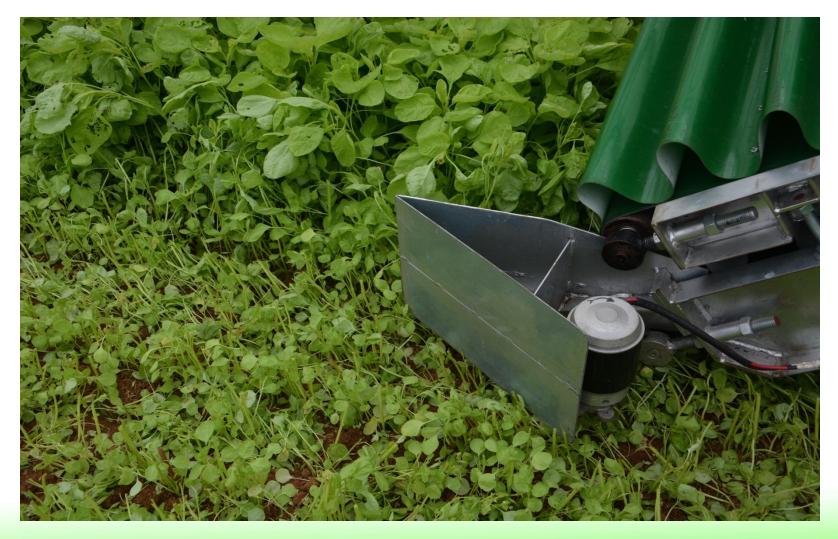
107年8月8日桃園場蕹菜收穫測試

執行成果 栽培及收穫操作方法改進

- 1.在收穫行之最左側20公分寬以人工先收穫
- 2.或是在收穫行中間先以人工收穫一行20公分寬
- 3.如此可避開前端往復式割刀部電動馬達壓傷葉菜
- 4.或者是播種栽培時可以左側或中間留一行不種植
- 5.收穫前收穫機外部油壓管線整理以減少壓傷蔬菜

10月16日在收穫行之最左側20公分寬以人工先收穫

Taoyuan District Agricultural Research and Extension Station


收穫機收穫情況

收穫機收穫情況

收穫機收穫情況

收穫距地面10公分情况

收穫的葉菜外表損傷就很少

再分別秤稱每籃重量

- 1.八德第二班: 呂學輝桃園市八德區廣興路1260號
- 2. 温室第39棟(寬5.3公尺高2.85公尺長15.7公尺)。
- 3.天氣陰天、氣溫25度。
- 4.107年10月16日早上9點20開始至10點53分
- 5.操作測試人員詹德財、協助人員謝富英,計時人 員黃柏昇,拍照人員邱銀珍
- 6. 收穫作物、莧菜

- 7.溫室左側先以人工割(播種7行)寬,用於躲避割取部馬達所造成的損傷,然後再進行測試
- 8.割取刀距地 10~12公分、長15公尺、割寬1以尺
- 9.第一次測試 3分36秒、收穫16.2公斤、損傷率4.98% 第二次測試 3分35秒、收穫19.2公斤、損傷率4.95% 第三次測試 3分34秒、收穫21.6公斤、損傷率4.93% 第四次測試 3分34秒、收穫18.6公斤、損傷率4.92% 第五次測試 3分27秒、收穫18.6公斤、損傷率4.91%

10月30日收穫前中間先以人工收穫一行

107年10月30日桃園蔬菜第二班收穫測試

執行成果如下

- 1.機械行走速度 0.45~0.5 m/min
- 2.損傷率由106年15%降至107年4.88%
- 2.因損傷率減少10.12%,也就是收穫量增加10.12%
- 3.本機改進後之收穫效率,提升至9人工時/每分地
- 4.人工散裝收穫27人工時/分地
- 5.每分地採用機械可節省66.6%時間 (27-9)/27=66.6 %

缺點

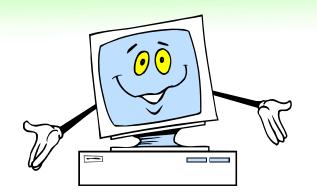
- 1.畦面不平,收穫作物長度會受引響
- 2.作物栽培前整地需平整
- 2.收穫機造價尚貴會影響推廣

電動遙控收穫機系統設計:

有鑑於在實際收穫過程中,操作人員無法直視 收穫機構割取部距地高度,加上畦面壤土顆粒大及 畦面不甚平整問題,易造成收穫機割取部距地高度 忽高忽低,導致割取葉菜時的割取高度不均,

為解決此問題,

- 1.從整地平整一致
- 2.及操作人員可以看見割取部距地著手,而考 慮增加電動遙控功能設計,作為解決調整收 獲割取部距地問題。


項次	名稱	規格	數量	單位
1	行走機構	遙控動作(前進、後退、左彎、右彎)電動 馬達600kw 長1000mmL(含以上)*宽700mm*高900mm(含 以上)	1	只
11	輸送機構	輸送帶(前進、後退)長900mm(含以上)*寬700mm(含以上)*高75mmL(含以上)	2	只
Щ	油壓機械	遙控傳送帶上昇下降 500mm(含以上)	8	條
四	切割機械	電動馬達500kw,有交割寬700mm(含以上)	2	支
五	電力系統	鋰電48V	8	只

未來研究方向及展望:

解決農業缺工問題之手段不外是開發出合適之農業機械,用於取代人工,而要讓研發成果普及之因素。

除了功能、效率外,價格更是主導的因素。農業機械之開發至完善也不是短期內一步就可以到位的,就象品種育種,藥品開發一樣有一段長遠的路要走。

以上報告

数海指数