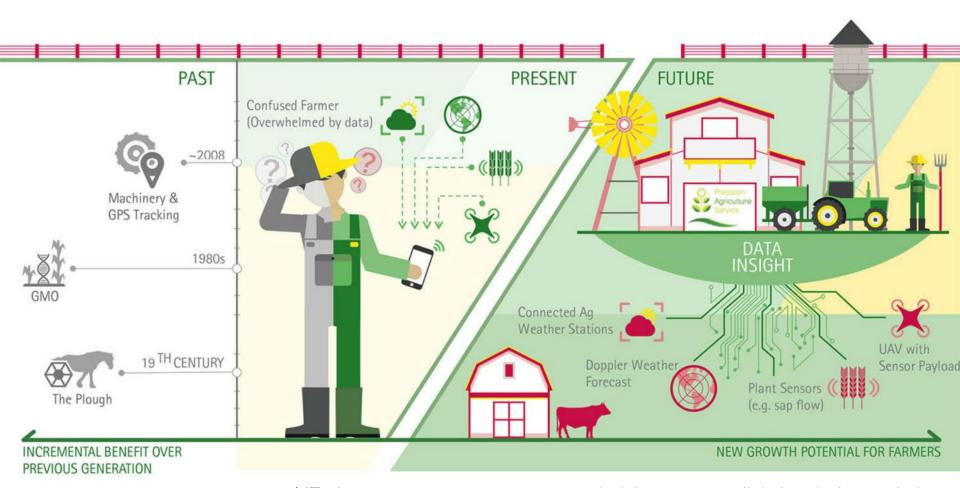
建構設施盆花智慧灌溉模式


楊雅淨、呂朝元、賴信忠

大綱

- 前言
- 本場智慧農業開發系統介紹
- 盆花灌溉監控系統建置及成本分析
- 盆花灌溉監控系統效益分析
- R語言演算法串接應用
- 本場智慧農業開發系統近程目標
- 結語

過去現在

未來

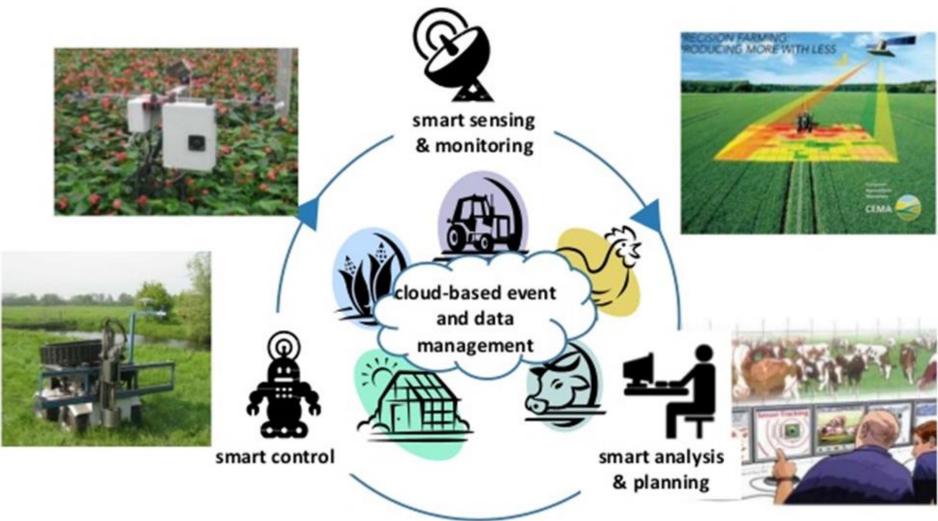
來源:https://www.accenture.com/us-en/insight-accenture-digital-agriculture-solutions

4 grand challenges: tomorrow's business

Food & nutrition security

Climate change

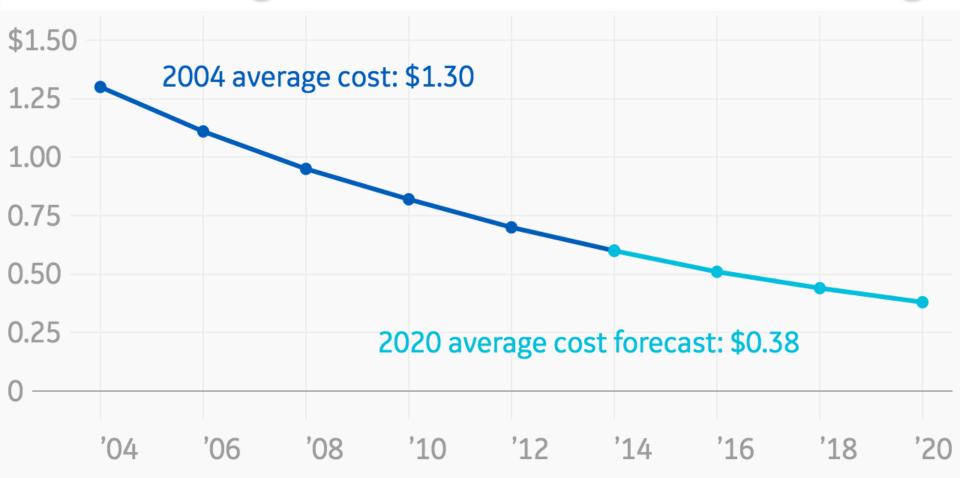
Environmental issues


Healthy diet for a healthy life

Collaboration and Data Exchange is needed!

資料來源: Poppe, 2016

IoT in Smart Farming


物聯網(Internet of Things, IoT)是網際網路,讓所有能行使獨立功能的普通物體實作互聯互通的網路。透過收集這些小事的資料,最後可以聚整合大數據

WAGENINGEN UR

資料來源: Poppe, 2016

3

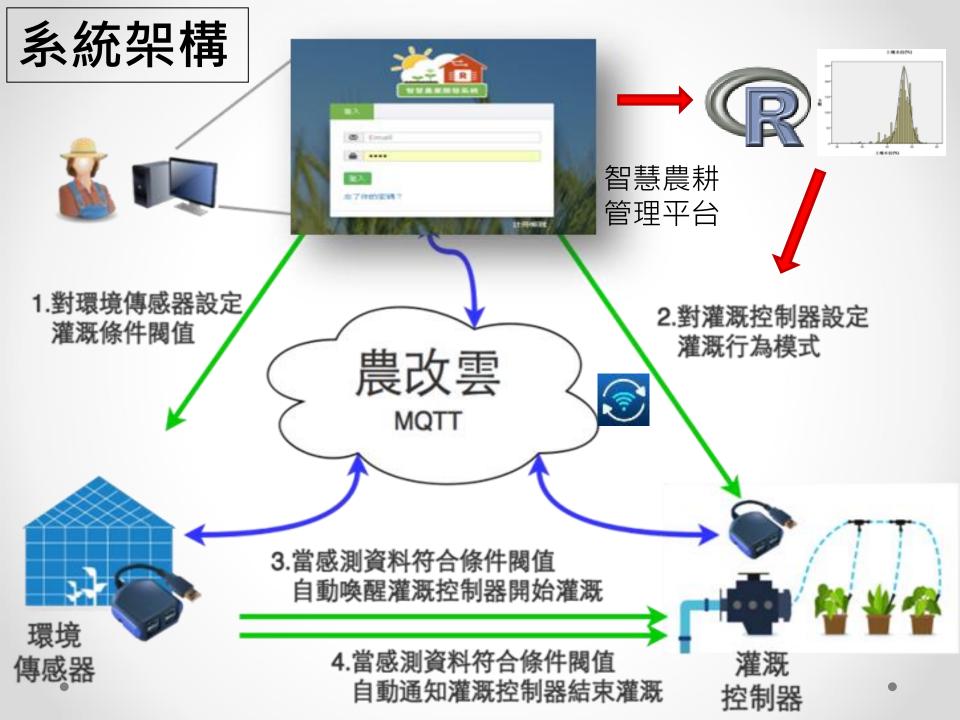
The average cost of IoT sensors is falling

資料來源: https://www.theatlas.com/charts/BJsmCFAl

導入智慧化管理以改善農業現況

- 經驗管理-> 數據化-> 智慧精準管理
- 現場管理-> 遠端高效管理

WSN
IoT
Big Data
Machine Learning
AI
Genetic Algorithm
Expert System
Neural Network
Deep Learning


運用無線感測網路技術,軟硬體平台操作系統,建立環控設施,進行遠端種植(養殖)監控,收集資料並進行分析,客製化與智慧化的生產模式,以達到最大的經濟效益,使得農業的產銷資源運用更具效率。

•8

智慧農業開發系統介紹

無線傳輸監控裝置

環境傳感器:

光度、空氣溫/溼度 土壤溼度

電子秤傳感器: 20公斤、150公斤

三軸加速傳感器:量角器、光度計

控制器(馬達、灌溉): 流量計(4分、6分)、繼電器

灌溉監控裝置

環境傳感器

空氣溫度:-40-125℃

空氣溼度:0-100% 土壤溼度:0-1,024

光度計: 0.045-188,000 Lux

 $(0-2,500 \mu mol/m^2/sec)$

輸入電壓 110V-220V

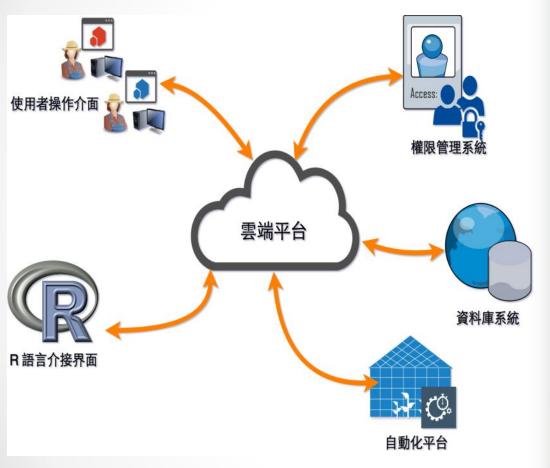
流量控制器

6分管流量計:1-60 L/min 允許耐壓:1.20 Mpa 以下 4分管流量計':1-30 L/min 允許耐壓:1.75 Mpa 以下

允許溫度:80℃以下

繼電器控制訊號:直流或交流 繼電器最大負載:15A 380V

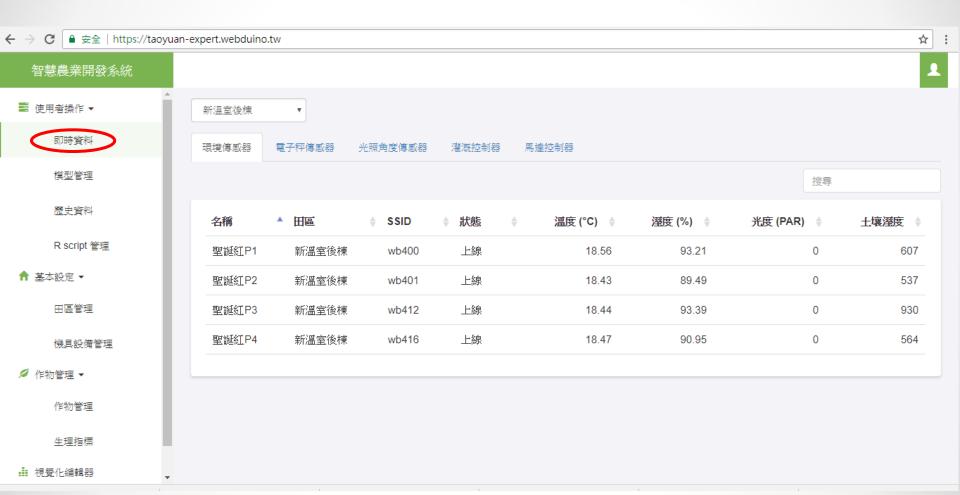
20kg電子秤傳感器


最大量程:20KG 可測量精度:1g

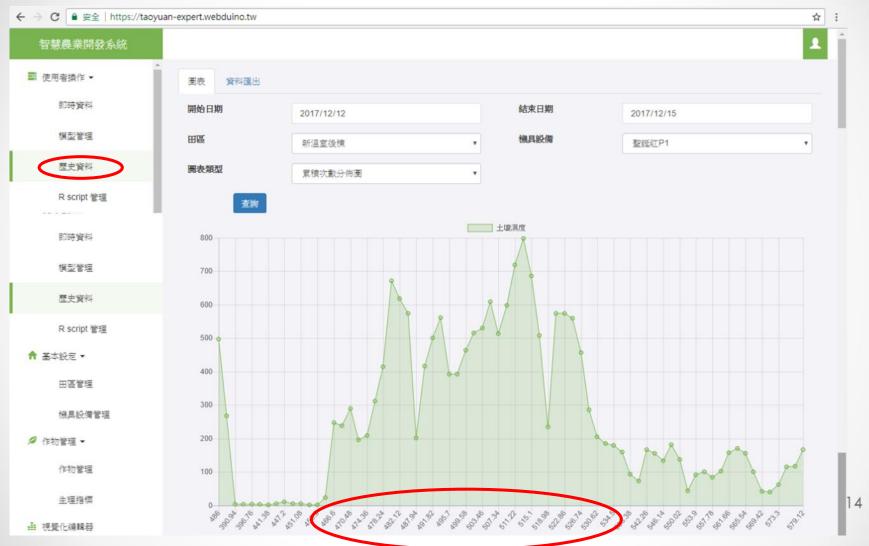
150kg 電子秤傳感器

最大量程: 150KG 可測量精度: 10g

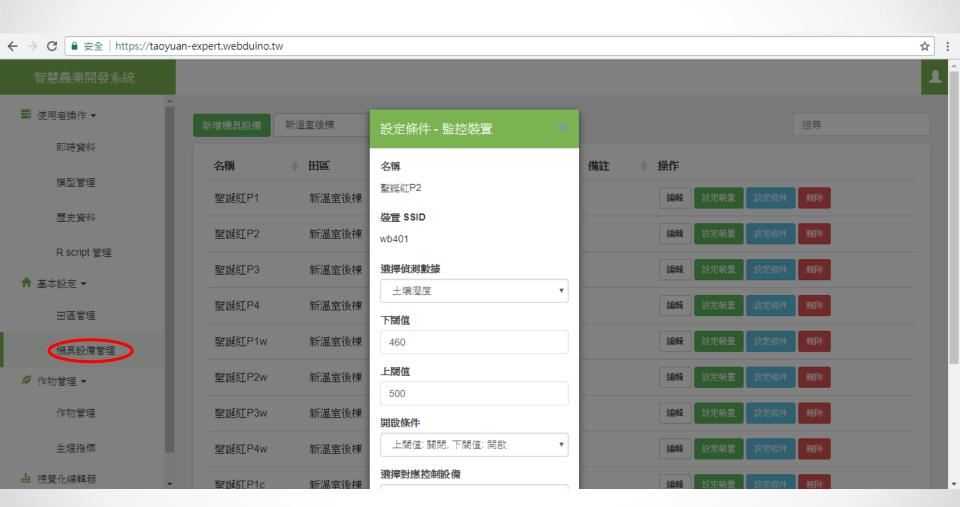
智慧農耕管理平台



• 13



智慧農耕管理平台-感測數據



智慧農耕管理平台-土壤溼度閾值

智慧農耕管理平台-監控設定

智慧農耕管理平台-智慧化管理程式

• 17

國內盆花產業智慧化(自動化)需求

- 溫帶盆花生產倍受氣候變遷衝擊
- 二代青農紛紛接棒,專業技術傳承不易
- 缺工問題漸趨嚴重
- 時間排程已無法應付一日多變的天氣型態
- 環境及灌溉控制灌溉模組建置比例高,升級門檻低、效益高

盆花灌溉監控系統建置及成本分析

項目	數量	單價
4G wifi 分享器	1台	3,791
1HP加壓馬達	1台	6,500
1尺半2防水開關箱	1組	1,500
PVC防水開關箱	1組	1,000
控制箱體組裝	1式	5,000
水電管線安裝	1式	5,600
4分電磁閥	1組	1,500
環境傳感器	1台	2,926
控制器	1台	2,375
合計		30,192

聖誕紅盆花栽培及系統建置

'聖誕節'8月9日定植於5寸盆。

9月19日設置環境傳感器、電子

秤傳感器,記錄空氣溫/溼度、

光度、土壤溼度及盆花重量。

11月1日設置灌溉控制器,記錄流量(L/植床)。

12月12日結束試驗。

11月1日至12月5日

	1 1 7 3 9 1 1			
試區	控制設定:	依據 土壤溼度	給水模式	
可以四	下閾值-開啟	上閾值-關閉		
P1	時間排程-每週	一、三、五、目	日,上午8:12,給水4分鐘,流量約為15 L/區	
P2	460	500	給水總時間24分鐘,間歇給水-啟動2分鐘/關閉4分鐘	
P3	460	500	給水總時間24分鐘,間歇給水-啟動2分鐘/關閉4分鐘	
P4	460	500	給水總時間24分鐘,間歇給水-啟動2分鐘/關閉5分鐘	
P5 •	時間排程-每週	一、三、五、目] , 上午8:12 , 給水4分鐘 , 流量約為15 L/區 ●20	

灌溉監控系統對聖誕紅生長之影響

12月7日調查

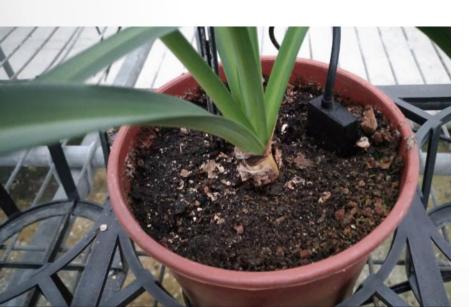
試區/處理	株高	展幅	分支數	最大葉長	最大葉寬	鮮重	乾重
	С	m	No.	cr	m		J
P1	31.7	46.3	6.0	13.9	9.8	153.9	25.1
P2	34.7	45.0	6.0	12.8	9.2	170.6	30.9
P3	31.8	42.7	5.3	12.6	8.7	125.3	24.1
P4	33.7	43.3	5.3	12.4	8.7	139.1	28.4
P5	32.0	42.7	5.7	11.8	8.4	148.9	27.3

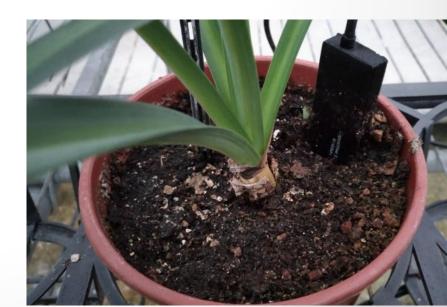
Ρ1

P

P4

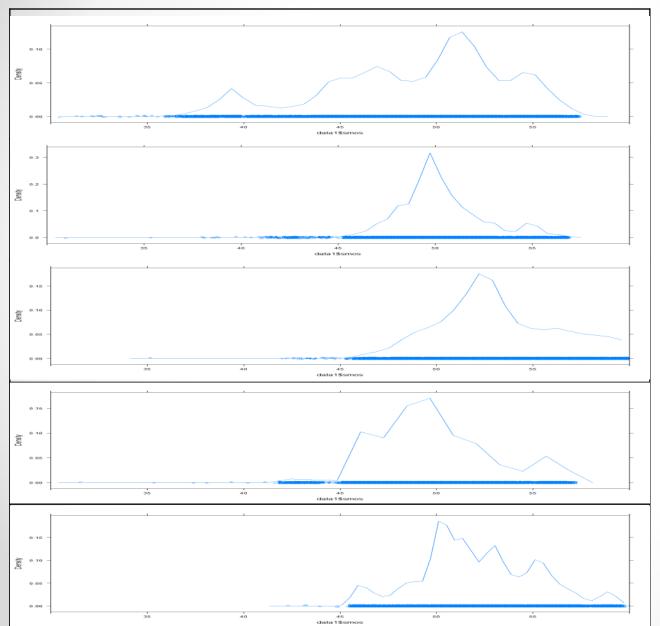
P5


P3



灌溉監控系統節水效益分析

灌溉量分析-11月10日至12月12日(期間共33日)


試區	累積灌溉量	平均灌溉量	 精註	
即四	(L/盆)	(mL/日×盆)	1角 註	
P1	3.6	109	位置較為通風,人為補水數次。	
P2	3.5	108	11/10及12/8水分計未放置妥當而持續灌溉,數據已扣除	
P3	3.6	108		
P4	3.9	120	11/10 - 17水分計未放置妥當而持續灌溉,數據已扣除。	
P5	2.9	88		

灌溉監控系統土壤溼度控制效果

P1:時間排程

P2:土壤溼度控制

P3:土壤溼度控制

P4:土壤溼度控制

P5:時間排程

智慧農業開發系統平台與R

智慧農業開發系統

■ 使用者操作 ▼

即時資料

模型管理

歷史資料

R script 管理

▲ 基本設定 ▼

田區管理

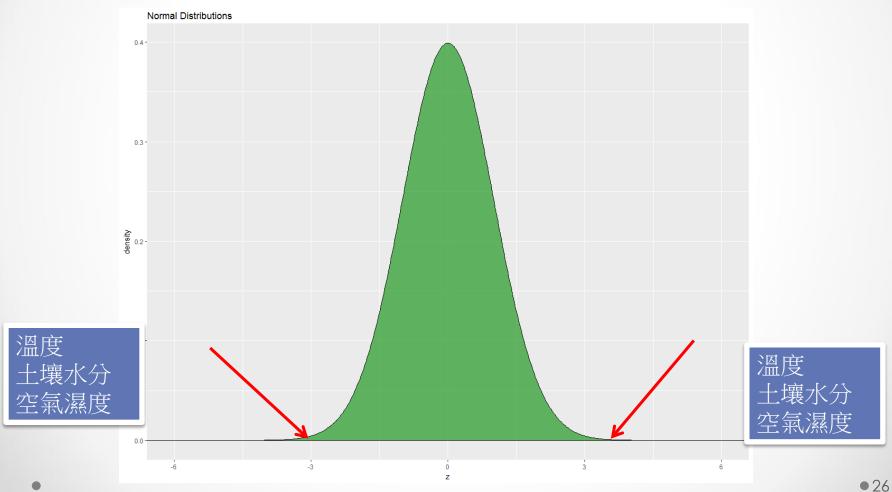
機具設備管理

作物管理

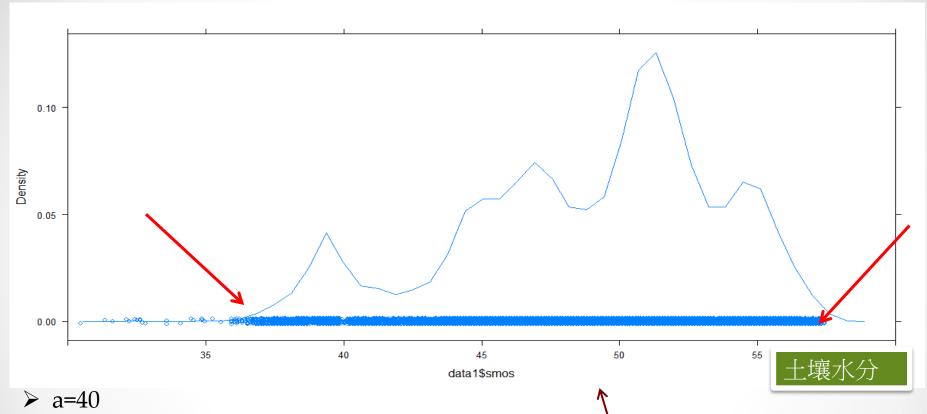
生理指標

■ 視覺化編輯器


▲ 個人資料


2U 機架式伺服器

- 中央處理器 Intel® Xeon® 處理器 E5-2600 v4 product family (145W)
- 作業系統支援
 Windows® Server 2016
 Linux Enterprise Server
 Ubuntu
- 產品尺寸750mm x 444mm x 88mm 29.5" x 17.5" x 3.5"



常態分布

避免極端值發生

- > > b<-pnorm(a, mean = 49, sd = 4.6)
- > > b = 2.7%

串接R語言

智慧農業開發系統

■ 使用者操作 ▼

即時資料

模型管理

歷史資料

R script 管理

▲ 基本設定 ▼

```
Upload
            C Refresh
prob.R
                                    49
probability.R
                                    830
 Success: 上傳成功!
                                                 X
  > a=40
  >> b<-pnorm(a, mean = 48.95, sd = 4.64)
  >> b [1] 0.02687292
  >> if(b < 0.05) TRUE else FALSE
  >[1] TRUE
```


即時資料

模型管理

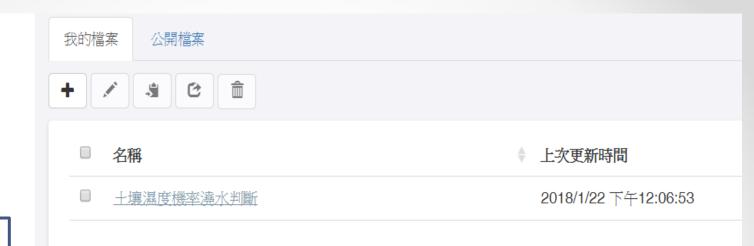
歷史資料

R script 管理

▲ 基本設定 ▼

田區管理

機具設備管理

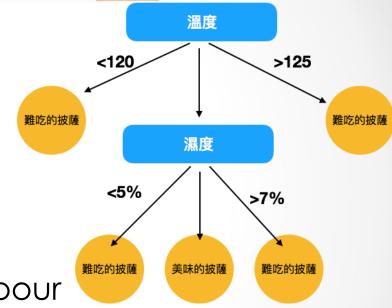

∅ 作物管理 ▼

作物管理

生理指標

፟ 視覺化編輯器

▲ 個人資料



視覺編輯器與R套件連結

- 決策樹
- Decision Tree
- 隨機森林
- Random Forest
- 最近鄰居分類法(k-Nearest Neighbour Classification, KNN)
- 支持向量機(Support Vector Machines, SVM)
- 樸素貝氏分類器(Naive Bayes Classifier)

系統優缺點

優點	缺點
裝置可客製化。	作物生長模型尚未建置
價格平易近人。	沒有網路無法使用R來運算, (仍可使用上下閥值等設定)
上下閥值已可解決部分管理問題	仍需花時間學習R
隨時隨地可取得即時數據。	
系統開源,可串接多種感測器,記錄讀 取資料。	
可導入R上萬種套件	

• 32

系統改善與升級規劃

- **傳感器種類擴充:**葉片溫度、土壤溫度、土壤酸鹼度、 土壤電導度、光質/光譜......
- 建置影像辨識系統
- 建置**手機App預警**功能
- 傳感器與控制器模組化(耐候性等)
- 太陽能板供電

• 33

結語-現在應該做的事

- 運用本場感測設備開始收集田間及植物牛長資訊
- 將IOT導入設施作物,收集環境數據,利用R統計分析,完 成萬物皆可控制的智慧化栽培。
- 瞭解影響花卉牛產之關鍵因素,減少能源與水資源的利用

設定及操作

傳感器及控制器設定:

Wifi 設定

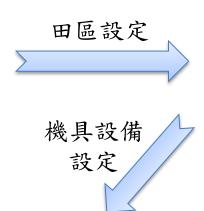
1. 連上傳感器wifi (預設密碼12345678) 2.打開網頁

192.168.4.1

3. 設定wifi ap 帳密,輸入傳感器SSID 及Device ID,送出

Save OK
WiFi SSID:TOTO
WiFi PWD:034768216
Device ID: XXXX
Device SSID: XXXX
Device PWD:12345678

4.顯示OK後離開, 重新連上外網



控制條件設定



設定

取消